The generator matrix

 1  0  0  1  1  1  1  1  1  6  1  1 X+6  1 2X+3  1  1  1  1  1 2X  1 X+3  1  1  1  3 2X+6  1  1  1  0  1  1  3  1  1 2X+3  1  1  1  3  1 2X+6 2X  X  1  1  1  1  1 X+6  1  1 2X+6  1  X  1  1  3  1  1  1 2X  1  1  1 X+6  1  1  1  1  1  1  1  3  1  1  1  6  1  1  1
 0  1  0  6  1  7  5  X  8  1 2X+7 2X+5  1 X+3  1 2X X+2 X+4 X+8 X+6  1 X+7  1 X+5  7 2X+2  1 X+6 2X+4  3 X+6  1  5  8  1 2X+3 2X+8  1 2X+6 2X+4  5 X+6 2X+1  1  3  1 2X+2 2X+5  6 2X+6  0  1 X+1 X+2 2X+3  0  1 2X+7  4 2X+3  1 2X  2  1 X+2  X 2X+7  1 2X+8 2X+2  6  X  4 X+1 X+3  1  X X+5  1  1 2X+3 2X+6  0
 0  0  1 2X+7 2X+1  6 X+2 X+8 2X  1 2X+5  7  5 2X+3 X+6  4 2X  3 X+2 2X+2 2X+8 2X+4 2X+3  7  2 2X+6 X+7  1  4 2X+3 2X+4  5 2X+8 2X+1 2X+5  8  5 X+1  6 2X+3 X+1  1 X+5 2X+7  1 X+6  0 X+8  5 2X+2  7 2X+1  8 2X+7  1 X+4 2X+5 X+4 X+4  1 2X 2X+7 X+3 X+8 2X+5  6  2  7 2X+5 X+7 X+8  8  4 X+8  X X+5  7 X+6 2X+3 X+6 2X X+3 X+3

generates a code of length 83 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 160.

Homogenous weight enumerator: w(x)=1x^0+1524x^160+1230x^161+1208x^162+2814x^163+1638x^164+1180x^165+2478x^166+1248x^167+816x^168+1548x^169+696x^170+556x^171+1236x^172+522x^173+176x^174+600x^175+174x^176+30x^177+2x^180+6x^187

The gray image is a code over GF(3) with n=747, k=9 and d=480.
This code was found by Heurico 1.16 in 29 seconds.